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Abstract— Este trabajo es una muestra de los objetivos de-
sarrollados dentro de los Proyectos de Innovacién Docente
del Vicerrectorado de Planificacién, Calidad y Evaluacién
Docente de la Universidad de Granada. Concretamente se
presenta un programa en Mathematica [5] que puede ser
usado en asignaturas como Electrodiniamica Clasica o Elec-
tromagnetismo Avanzado para Ingenieros, y que estudia
numéricamente el proceso de radiacién en una antena de
hilo.

I. INTRODUCTION

N this paper the teaching program ”wire rad” is pre-

sented. It studies numerically the radiation process in a
thin wire antenna excited by a broadband signal. Funda-
mentally, with the program we can obtain:

o Charge and current distribution on the antenna

« Electric and magnetic field (near and radiated terms sep-
arately) in an arbitrary point for every time

Time domain and frequency domain are combined: the
source distribution is obtained in frequency domain and
then transformed via Discrete Fourier Transform (DFT)
to time domain in order to obtain the radiated fields.

The program is fully interactive and it allows us to calcu-
late further antenna parameters such as input impedance,
or field magnitudes such as Poynting vector. The user
knows what the program is doing due to the clarity of the
Mathematica syntax. We have sacrificed a good program-
ing technique in favour of transparency.

Through this paper all the information about the pro-
gram is given in order to use it in a Classical Electrody-
namic class or an Advanced Engineering Electromagnetics
class on radiation process.

We solve the Hallen equation to find the frecuency do-
main current distribution along the wire, The charge den-
sity is calculated from the current distribution in time do-
main using the continuity equation. The radiated field is
given by equations derived from Jefimenko’s generalization
of the Coulomb and Biot-Savart laws.[1]

The Hallen equation is solved numerically using the

Method of Moments (MoM) [2], and equivalent approxima-
tions are used to evaluate the electric and magnetic fields.
This method is widely used in computational Electromag-
netism, as in other software such as [4]. The program that
is presented in this paper has the following differences:
1. It combines the time domain with frequency domain
showing the equivalence and taking advantage of each one.
2. It is written in Mathematica code: the user can follows
the calculus and can do extra calculus as well.
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Because the emission of radiation by a localized system
may be a difficult problem for the students, we hope with
this material they will be able to understand the physics
of the problem more easily.

In order to obtain the radiating system response at any
frequency, inside the interval in which the approximations
performed are valid, we excite the system with a narrow
gaussian pulse. In the limit (depending on its duration, a
negligible width) it has a broadband spectrum like the §-
Dirac function. Subsequently we can evaluate the system
response to any excitation function by convolution.

II. FORMULATION OF THE PROBLEM AND SOLUTION VIA
MoM

From the Hallen integral equation [1] we shall find
the electromagnetic field sources (surface currents and
charges). This equation is easily solved from a numeri-
cal point of view because it has no time derivatives of the
current intensity in its kernel, and as a consequence it is
the only unknown there is. We consider a thin linear an-
tenna of length L which is excited across a small gap on
its midpoint. The antenna is assumed to be oriented along
the z-axis with its gap on the origin. In order to obtain
the current along the antenna, we have to solve a bound-
ary value problem. We assume the antenna is a perfect
conducting wire with a small radius compared to both the
minimum wavelength of the excitation signal spectrum and
the length L. So that the current flowing on the surface has
only a longitudinal (z) component, and the fields have az-
imuthal symmetry. To avoid singularity in the kernel of
the integral equations we assume that the current flows in
the axis of the antenna, whereas the boundary conditions
are applied on the surface [3].

For the fields we use equations (6.55) and (6.56) of Jack-
son [1] specified for linear density of charge and current, in
which the temporal variable appears explicitly. We have
to transform the equations in order to write near field and
radiation field separately.

Our electromagnetic problem involves the solution of a
linear integral equation. We use the point-matching form
of the Method of Moments that transforms the integral
equation into a linear system of equations.

The intensity current is constant on each of the N, inter-
vals in which the antenna has been partitioned for its nu-
merical resolution (pulse basic functions). Obviously, the
calculation of the linear density charge and the time deriva-
tive of the current from the intensity current are made using
the interpolation polynomials, in time as in space. So each
one of this three variables are approximated by a matrix



with N rows that correspond to the Ny intervals in which
the antenna has been divided, and N; columns that corre-
spond to the number of time intervals in which the integral
equation has been solved. Once the point where we want
to calculate the field is fixed, for each spatial interval there
is a delayed time that is given approximately by an integer
number of time intervals. By the causality principle all the
sources are equal to zero for ¢ < 0 so in order to evalu-
ate the sources at the delayed time it is enough to add a
number of zeros to each row equal to the previously men-
tioned temporal interval integer number. Once these zeros
are added we have the sources as are ”seen” from the field
point, and the calculation of the radiated field implies only
a sum by columns multiplied by the factor corresponding
due to the integral kernel.

I1I. RESULTS

As an example we have studied the current distribution
on an antenna of 1 meter length, radius a = 0.00672m, and
feed by a gaussian pulse with parameter g = 3.0 x 109571,
therefore A, = 0.20,0.15m regarding the effective width
pulse up to 1/10 or 1/100 from its maximum value. The
difference is very small due to the exponential declining of
the feeding signal amplitude. Even for the smaller value
it is found that A, is huge compared to the wire radius.
The antenna has been divided into 30 segments (N, = 15),
so each spatial interval is 0.033m length.

1
/l/\(\‘\
0.5 z .

7 \

\
‘. \ .
s "
L — A s el

7|5 10 1205 15 \1\7‘_5/20———2‘2—5—25

Fig. 1. Early time at the feeding point of the current (solid line),
time derivative of the current (dashed line) and charge density (dotted
line) in normalized representation

Figure 1 shows the early time response of the current at
the feeding point (solid line) together with the time deriva-
tive of the intensity current (dashed line) and the charge
density (dotted line). It has been normalized to the maxi-
mum value for a better representation of the fact that the
time derivative of the current has a maximum value some
time instants before the charge density and the intensity
current. This means that the radiation fields must have
a peak value before it occurs at the near fields. Figure 2
represents the z component of the electric field at the point
Z = (0,3,15)As (x and y components are not relevant com-
pared to z) separated in the near field (coulombian, dashed
line, inductive, solid line) and the radiation field (dotted
line). It can be clearly seen that the last one has a maxi-
mum before the other two contributions.
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Fig. 2. Ez radiated field at the observation point Z = (0, 3,15)As, de-
composited on the terms: coulombian (dashed line), inductive (solid
line) and radiation field (dotted line)

IV. CONCLUSIONS

We think that with this focus that has been given to the
analysis of an interesting radiating system, such as the thin
wire antenna, it has been possible to provide the student
with a tool with which to explore several ideas related to
the radiation phenomena, such as the following:
 Setting out the problem of determining, using the bound-
ary condition on the antenna, the sources of the field know-
ing the excitement and the geometry of the structure.

e Dependence of the different terms of the field with the
sources evaluated in delayed time.

o The understanding of the equivalence between the time
domain and the frequency domain.

¢ Introduction to the use of numerical methods.

At the same time solution to a practical problem is
demonstrated whilst comprehension of the concepts is
achieved.

A concise and clear algorithm has been developed using
MATHEMATICA [5]. It allows the user to easily change
any parameter that defines the problem and see the results
(charge and intensity in frequency domain and time do-
main, near and far electric field, magnetic field, etc.) on
the screen. The solution presented in this paper, the thin
wire antenna, is a very good thought provoking problem
for the students.
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